KU LEUVEN

CAPABARA: A Combined Attack on CAPA

Dilara Toprakhisar, Svetla Nikova, Ventzislav Nikov COSADE'24 09.04.2024

Physical Attacks

1- Passive Attacks

- Side-Channel Analysis (SCA)
 - Exploits the observable leakage
- Masking
 - Statistically independent random shares

Physical Attacks

2- Active Attacks

- Fault Attacks (FA)
 - Intentionally disturb computations
 - Initially exploited wrong ciphertexts, e.g., DFA, SFA
- Redundancy
 - SIFA (targeting registers/linear operations)
- Redundancy + masking
 - SIFA-2 (targeting nonlinear operations)

3- Combined Attacks

• SCA + FA

The CAPA Countermeasure

The Tile-Probe-and-Fault Model

The Tile-Probe-and-Fault Model

- 1. d_p -probing
 - All intermediate variables within d_p tiles
 - From beginning to the end
 - With a probability one

- 1. d_f -faulting
 - Chosen value faults
 - Any number of precisely chosen variables within d_f tiles
- 2. ϵ -faulting
 - Random value faults
 - Any variable within any tile

The Tile-Probe-and-Fault Model

Adversary \mathcal{A}_1

- d_p -probing + d_f -faulting
- d_p , $d_f \leq d-1$
- At least one share/tile is unaccessed

Adversary \mathcal{A}_2

- d_p -probing + ϵ -faulting
- $d_p \leq d-1$

The CAPA Design

- Preprocessing stage
 - Auxiliary data
 - Denoted with *a*, *b*, *c*, ...
- Evaluation stage
 - Denoted with *x*, *y*, *z*, ...
- Works over \mathbb{F}_{2^n}
- α is the MAC key
 - $\tau_x = \alpha x$ denotes the tag of x
- Boolean masking
 - $x = x_0 + x_1 + \dots + x_{d-1}$

Multiplication ($z = xy, \tau_z = \alpha xy$)

Beaver Triples (*a*, *b*, *c*)

Relation Verification of Beaver Triples

CAPABARA: The Combined Attack Description

Adversarial Model of CAPABARA

- Single-shot transient fault to a variable in \mathbb{F}_{2^n}
- Loose fault location
- Precise fault timing
- Any type of fault injected to a register
- Probing a chosen variable
- Stays within the tile-probe-and-fault model
 - Also works with *t*-probing and gate/register faulting models

Fault Injection Step

Fault Injection Step

Probing Step

- (a', b, c) passes the relation verification
 - This implies b = 0, c = 0
- b = 0 is used to blind one of the inputs in CAPA multiplication
 - $\eta = y + b = y$ is unmasked \bigcirc

Fixes Against the Proposed Attack

Fixes Against the Proposed Attack

- 1. Computing the tags of *a* and *b* prior to forming the triple
 - CAPABARA: *a* is faulted after *c* is computed, before the tags are computed
 - Three fault injections with the same success probability
 - A fault is injected to a(a') before its tag is computed
 - After the tag is computed, the same fault is injected to a' again to revert it (a)
 - *c* is computed using correct *a* and *b*
 - The same fault is injected to a(a') again

Fixes Against the Proposed Attack

- 2. Randomly choosing the Beaver triple to be used in the multiplication
 - CAPA can choose between (a, b, c) and (d, e, f) to be used for blinding
 - Single fault injection with half of the initial success probability
 - Two fault injections for the same success probability
 - Multiple (*m*) Beaver triples can be generated, and two of them can be chosen for the relation verification
 - Single fault injection with 1/m of the initial success probability
 - *m* fault injections for the **same** success probability

Fixes Against the Proposed Attack

- 3. Zero check on *c*
 - Indirectly checks if a = 0 or b = 0, preventing ineffective faults
 - Compromises the uniformity of the unmasked blinded multiplication inputs

Summary

- Single fault injection in a Beaver triple (a, b, c) + single probe
- The attack is successful $\leftrightarrow b = 0$
 - Probability $1/2^n$
 - $b = 0 \rightarrow$ an unmasked variable occurs some cycles after the injection
- The fault does not need to be repeatable
- Proposed fixes
 - Increased attack complexity
 - New vulnerability

Thank you!